Processing and analyzing experimental stochastic profiles
So you’ve measured your profiles... now what?

• Single-gene measurements (qPCR)
 – Use same approach from Monte-Carlo simulations to filter heterogeneities

• Global expression profiles (Illumina arrays)
 – Process raw array reads
 – Filter genes that are heterogeneously regulated
Illumina array normalization

- Normalize each array to its average fluorescence

```matlab
for i=1:2:size(ControlSamplings.data,2)-1
    ControlSamplings.data(:,i)=ControlSamplings.data(:,i)* ...
        mean(avgintensity)/mean(ControlSamplings.data(:,i));
    RangeSamplings(:,j)=ControlSamplings.data(:,i);
    j=j+1;
end

j=1;
for i=1:2:size(StochSamplings.data,2)-1
    StochSamplings.data(:,i)=StochSamplings.data(:,i)* ...
        mean(avgintensity)/mean(StochSamplings.data(:,i));
    RangeSamplings2(:,j)=StochSamplings.data(:,i);
    j=j+1;
end```

Filter reliably detected genes

• Less stringent filtering to account for difficult preamplification protocol
  – Filter median p-value per gene (you decide the stringency)
    \[
    \text{median}(\text{pdetect}(i,:)) \geq \text{pdetectthresh}
    \]
  – Filter based on range of values detected (you decide the range)
    \[
    \text{max}(\text{RangeSamplings}(i,:)/ \text{min}(\text{RangeSamplings}(i,:))) > \text{reprodthresh}
    \]
  – Ensure that each array has a non-zero fluorescence for a given gene
    \[
    \text{geomean}(\text{RangeSamplings}(i,:)) = 0
    \]
Renormalize detected genes to array median

```matlab
for i=1:2:size(StochSamplings.data,2)-1
 NormStochSamplings(:,k)=StochSamplings.data(:,i)*median(medianintensity)/median(StochSamplings.data(:,i));
k=k+1;
end

k=1;
for i=1:2:size(ControlSamplings.data,2)-1
 NormControlSamplings(:,k)=ControlSamplings.data(:,i)*median(medianintensity)/median(ControlSamplings.data(:,i));
k=k+1;
end
```
“Z-score” profiles

• Normalize each array to its geometric mean, normalize each gene to its geometric mean
  – Dividing by average in normal space

• Log transform the data
  – Brings the data into normal space

• Samples equal to mean will be 0, above > 0, below < 0
MATLAB implementation

for i=1:genlength
    Stochscalematrix(i,:) = ones(1,Stochsamplength).*geomean(NormStochSamplings);
end

Controlscalematrix(i,:) = ones(1,Controlsamplength).*geomean(NormControlSamplings);

Stochscaledsamplingstemp = NormStochSamplings./Stochscalematrix;
Controlscaledsamplingstemp = NormControlSamplings./Controlscalematrix;

for i=1:Stochsamplength
    Stochscalematrix2(:,i) = ones(genlength,1).*geomean(Stochscaledsamplingstemp.');
end

for i=1:Controlsamplength
    Controlscalematrix2(:,i) = ones(genlength,1).*geomean(Controlscaledsamplingstemp');
end

ScaledStochSamplings = Stochscaledsamplingstemp./Stochscalematrix2;
ScaledControlSamplings = Controlscaledsamplingstemp./Controlscalematrix2;

% Log transform and extract genes with significant sampling variations
% based on F test
LogControlSamplings = log(ScaledControlSamplings);
LogStochSamplings = log(ScaledStochSamplings);
Identifying significant fluctuations

- Need to separate true biological variation from technical, sample variation
- Compare the variance per gene in stochastic samples to control, population-level samples
F-test

• Statistical test to determine whether two samples have different variation
  – Null hypothesis: variances are equal
• F statistic is the ratio of the two sample variations
• Degrees of freedom are the number of samples in each data set
F-distribution

Value of F statistic

\[ X = \text{variance of 10-cell samples} / \text{variance of population samples} \]
MATLAB implementation

```matlab
for i=genelist:-1:1
 psampvar(i)=1-fcdf(var(LogStochSamplings(i,:))/var(LogControlSamplings(i,:)), ...
 size(LogStochSamplings,2)-1,size(LogControlSamplings,2)-1);
end
sortpsampvar = sort(psampvar);
i=1;
while sortpsampvar(i) < i/length(psampvar)*FDRval
 i=i+1;
end
pcrit=sortpsampvar(i-1);
for i=genelist:-1:1
 if psampvar(i) > pcrit
 LogControlSamplings(i,:)=[];
 LogStochSamplings(i,:)=[];
 GeneNames(i)=[];
 end
end
```
Determine reference CV

\[
CV_{\text{ref}} \quad 15\text{–}20\% 
\]

10-cell sampling CV (\%)
MATLAB filtering of global profiles

\[
[h,p(i)]=\text{kstest}(\text{SortedStochSamplings}(i,:)',
\quad [\text{SortedStochSamplings}(i,:)]'
\text{normcdf}(\text{SortedStochSamplings}(i,:)',0,\sqrt{\log(\text{CVref}^2+1)})],
\quad 0.05,'\text{unequal}');
\]

- \( p < p_{\text{critical}} \) – gene is scored as heterogeneously regulated
Exercise and Discussion

• Using the data in `Sampling_example.txt` and `Control_example.txt`, pre-filtering code `StochProfMicroarrayFilt.m`, analysis code `StochProfAnalysis.m` to observe the effect of using different reference CVs on the final geneset