CURRICULUM CHANGE! BME 2240 BIOTRANSPORT is now REQUIRED for the Class of 2011 and later. If you graduate in 2010, you may replace BME 2240 with a technical elective.
1st Semester

APMA 1110 Single Variable Calculus 4
CHEM 1610 Introductory Chemistry for Engineers . 3
CHEM 1611 Intro Chemistry Lab 1
ENGR 1620 Intro to Engineering 4
STS 1010 Lang, Comm & Tech Society 3

TOTAL 15

2nd Semester

APMA 2120 Multivariate Calculus 4
PHYS 1425 General Physics I 3
PHYS 1429 General Physics I Workshop 1
CS 1110 Intro to Computer Science 3
Science Elective I (1) 3
HSS Elective (2) 3

TOTAL 17

3rd Semester

APMA 2130 Ordinary Differential Equations 4
PHYS 2415 General Physics II 3
PHYS 2419 General Physics II Workshop 1
BME 2000 Intro to BME Design & Discovery 3
BME 2101 Physiology I 3
Unrestricted Elective (3) 3

TOTAL 17

4th Semester

BME 2102 Physiology II 3
BME 2104 Cell and Molecular Biology 3
BME 2220 Biomechanics 3
BME 2240 Biotransport 3
STS Elective ... 3

TOTAL 15

5th Semester

BME 3310 BME Systems Analysis and Design 3
BME 3080 BME IDEAS Laboratory I 4
APMA 3110 Stat/Prob or APMA 3100 Probability ... 3
HSS Elective (2) 3
Engineering Elective (5) 3

TOTAL 16

6th Semester

BME 3090 BME IDEAS Laboratory II 4
BME 3315 Computational BME 3
Unrestricted Elective (3) 3
Technical Elective (6) 3
Engineering Elective (5) 3

TOTAL 16

7th Semester

BME 4063 BME Capstone Design I 3
STS 4010 Western Technology and Culture 3
HSS Elective (2) 3
Unrestricted Elective (3) 3
BME elective (6) 3

TOTAL 15

8th Semester

STS 4020 The Engr in Society 3
BME 4064 BME Capstone Design II 3
Unrestricted Elective (3) 3
BME Elective (6) 3
BME Elective (6) 3

TOTAL 15

Credits 126

(1) Science Elective I (3 credits)
Suggested: CHEM 1620 or MSE 2090. Chosen from:
BIOL 2101, 2102, CHEM 1620, ECE 2066, or MSE
2090.

(2) HSS Electives (9 credits)
Chosen from the approved list available in A-122 in
Thornton Hall.

(3) Unrestricted Electives (12 credits)
Chosen from any graded course in the University
except mathematics courses below MATH 1310,
including STAT 1100 and 1120, and courses that
substantially duplicate any others offered for the degree,
including PHYS 2010, PHYS 2020, CS 1010, CS 1020,
or any introductory programming course. APMA 1090
is an unrestricted elective.

(4) Technical Electives (3 credits)
Chosen from any 2000-level or higher science, math,
or engineering course, unless it is a course for non-sci-
ence majors, duplicates required BME course work, or
is a research-for-credit or capstone design course. See
list of excluded courses on page 8 of this guide.

(5) Engineering Electives (6 credits)
A two-course sequence of 2000-level or higher engi-
neering courses in a single area of concentration. Only
one BME course may be used in a sequence. Chose
courses from the approved list on page 9 of this guide.

(6) BME Electives (9 credits)
Chosen from any 3000-level or higher BME elective,
except BME 4311. One of the following non-BME
courses may be included as a BME elective: CHE
3347, CHE 4448, or ECE 5750. Only 3 credits of
BME 4995 may be used as a BME Elective.
Engineering Core (37 credits)
- APMA 1110 Calculus I
- APMA 2120 Multivariate
- APMA 2130 Ordinary Diff Equations
- CHEM 1610 Intro Chem
- CHEM 1611 Intro Chem Lab
- Science Elec I
- PHYS 1425 Intro Physics I
- PHYS 1429 Intro Physics I Workshop
- PHYS 2415 Intro Physics II
- PHYS 2419 Intro Physics II Workshop
- ENGR 1620 Intro to Engineering
- CS 1110 Intro Computer Science
- APMA 3100 or 3110 Prob or Prob/Stat

*APMA 1090 is an unrestricted elective

STS (12 credits)
- STS 1010 Lang & the Tech Society
- STS Elective
- STS 4010 Tech & Culture
- STS 4020 Ethics & Society

Engineering & Technical (9 credits)
- Engr Elective
- Engr Elective
- Tech Elective

HSS & Unrestricted (21 credits)
- HSS
- HSS
- HSS
- Unrestricted
- Unrestricted
- Unrestricted
- Unrestricted

BME (47 credits)
- BME 2000 Intro to BME
- BME 2101 Physiology I
- BME 2102 Physiology II
- BME 2104 Cell & Molecular Biology
- BME 2220 Biomechanics
- BME 2240 Biotransport
- BME 3310 BME Systems Analysis
- BME 3315 Computational BME
- BME 3080 IDEAS Lab I
- BME 3090 IDEAS Lab II
- BME 4063 Capstone Design I
- BME 4064 Capstone Design II
- BME Elective
- BME Elective
- BME Elective
- BME Elective

Planning Chart

<table>
<thead>
<tr>
<th>First Semester</th>
<th>BME 3090</th>
<th>BME 3315</th>
<th>BME 2102</th>
<th>BME 2104</th>
<th>BME 2220</th>
<th>BME 2240</th>
<th>BME 2101</th>
<th>BME 2000</th>
<th>PHYS 2415</th>
<th>PHYS 2419</th>
<th>APMA 2130</th>
<th>CHEM 1610</th>
<th>CHEM 1611</th>
<th>ENGR 1620</th>
<th>STS 1010</th>
<th>APMA 1110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Semester</td>
<td>CS 1110</td>
<td>PHYS 1425</td>
<td>PHYS 1429</td>
<td>APMA 2120</td>
<td></td>
</tr>
<tr>
<td>Third Semester</td>
<td></td>
</tr>
<tr>
<td>Fourth Semester</td>
<td></td>
</tr>
<tr>
<td>Fifth Semester</td>
<td></td>
</tr>
<tr>
<td>Sixth Semester</td>
<td></td>
</tr>
<tr>
<td>Seventh Semester</td>
<td></td>
</tr>
<tr>
<td>Eighth Semester</td>
<td></td>
</tr>
</tbody>
</table>
PreMed Requirements:

2 semesters *Chemistry Lecture & Lab.* Fulfilled by CHEM 1610, 1611 and CHEM 1620, 1621 (use your Science Elective I).

2 semesters *Physics Lecture & Lab.* Fulfilled by PHYS 1425, 1429, 2415, 2419.

2 semesters *Organic Chemistry Lecture & Lab.* Fulfilled by CHEM 2410, 2411, 2420, 2421 (use 1 technical and 3 unrestricted electives).

2 semesters *Biology Lecture & Lab.* Fulfilled by BIOL 2010-2040. Talk with your BME advisor and the premed advisor about whether or not this is the right decision for your situation.

About 2/3 of U.S. medical schools require one or two *English* courses. About 1/3 of U.S. medical schools require one or two semesters of math; a few specify that it must be *Calculus.*

Eighth Semester
Spring Year 4
- **BME Elective**
- **BME Capstone**
 - Design II
 - BME 4064
- **Engineering Elective**
 - 2xxx, 3xxx
- **HSS Elective**
- **Eng, Ethics & Society**
 - STS 4020

Seventh Semester
Fall Year 4
- **BME Elective**
- **BME Elective**
- **BME Capstone**
 - Design I
 - BME 4063
- **Engineering Elective**
 - 2xxx, 3xxx
- **Unrestricted Elective**
- **Western Tech & Culture**
 - STS 4010

Sixth Semester
Spring Year 3
- **BME IDEAs Lab II**
 - BME 3090
- **Computational**
 - BME 3315
- **Organic Chemistry II**
 - CHEM 2420
- **Organic Chem II Lab**
 - CHEM 2421
- **HSS Elective**

Fifth Semester
Fall Year 3
- **BME IDEAs Lab I**
 - BME 3080
- **BME Systems Analysis**
 - CHEM 3310
- **Organic Chemistry I**
 - CHEM 2410
- **Organic Chem I Lab**
 - CHEM 2411
- **Unrestricted Elective**
- **HSS Elective**

Fourth Semester
Spring Year 2
- **Physiology II**
 - BME 2102
- **Cell & Molecular Bio**
 - BME 2104
- **Biomechanics**
 - BME 2220
- **Biotransport**
 - BME 2240
- **If you can, take Orgo in the 2nd year.**
- **STS Elective**
 - 2xxx, 3xxx

Third Semester
Fall Year 2
- **Physiology I**
 - BME 2101
- **Intro Physics II**
 - PHYS 2415
- **Intro Physics II Lab**
 - PHYS 2419
- **BME Design & Discovery**
 - CHEM 2400
- **Probability OR Prob/Stats**
 - APMA 2130
 - APMA 3100 or 3110

Second Semester
Spring Year 1
- **Intro Chem for Engineers II Lab**
 - CHEM 1621
- **Intro Chem for Engineers II**
 - CHEM 1620
- **Intro Physics I**
 - PHYS 1425
- **Intro Physics I Lab**
 - PHYS 1429
- **Multivariate Calculus**
 - APMA 2120
- **Intro Comp Science**
 - CS 1110

First Semester
Fall Year 1
- **Intro Chem for Engineers I**
 - CHEM 1610
- **Intro Chem for Engineers I Lab**
 - CHEM 1611
- **Intro to Engineering**
 - ENGR 1620
- **Single Variable Calc**
 - APMA 1110
- **Lang & Tech Society**
 - STS 1010

CURRICULUM CHANGE!

BME 2240 Biotransport is now REQUIRED for the Class of 2011 and later.
Here is a plan of study for BME Majors interested in Medical Imaging. This is a guide. Work with your advisor to design a plan of study that meets your specific objectives.

Here’s how the Medical Imaging Schedule fulfills the requirements of the BME Major (prereqs in parentheses):

- ECE 2630 is your technical elective
- ECE 3750 (ECE 2630) replaces BME 3310
- ECE 3760 (ECE 3750) & ECE 5750 (ECE 3750, 3760) are your two engineering electives
- Take APMA 3100, not APMA 3110

Recommended BME Electives:

- BME 4995 BME Advanced Projects
- BME 7782 Medical Imaging Systems Theory (BME 3310 or ECE 3750)
- BME 4550 Diagnostic Ultrasound Imaging (BME 3310 or ECE 3750)
- ECE 6782 Digital Image Processing (will count as as BME elective)
- Other BME graduate-level classes.
 - Graduate-level courses require instructor permission.

<table>
<thead>
<tr>
<th>Eighth Semester</th>
<th>BME Capstone Design II</th>
<th>BME Elective</th>
<th>Eng, Ethics & Society STS 4020</th>
<th>Unrestricted Elective</th>
<th>HSS Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Year 4</td>
<td>BME 4064</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seventh Semester</th>
<th>BME Capstone Design I</th>
<th>BME Elective</th>
<th>Digital Signal Processing ECE 5750</th>
<th>Western Tech & Culture STS 4010</th>
<th>Unrestricted Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Year 4</td>
<td>BME 4063</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sixth Semester</th>
<th>BME IDEAS Lab II BME 3090</th>
<th>Computational BME BME 3315</th>
<th>BME Elective</th>
<th>Signals & Systems I ECE 3750</th>
<th>Probability APMA 3100</th>
<th>Unrestricted Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Year 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Semester</th>
<th>BME IDEAS Lab I BME 3080</th>
<th>BME Elective</th>
<th>Signals & Systems II ECE 3760</th>
<th>Unrestricted Elective</th>
<th>HSS Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Year 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Semester</th>
<th>Physiology II BME 2102</th>
<th>Cell & Molecular Bio BME 2104</th>
<th>Biomechanics BME 2220</th>
<th>Biotransport BME 2240</th>
<th>STS Elective 2xx, 3xxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Year 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Semester</th>
<th>BME Design & Discovery BME 2000</th>
<th>Physiology I BME 2101</th>
<th>Ordinary Diff Equations APMA 2130</th>
<th>Intro Circuit Analysis ECE 2630</th>
<th>Intro Physics II PHYS 2415</th>
<th>Intro Physics II Lab PHYS 2419</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Year 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Science Elective I</th>
<th>Intro Comp Science CS 1110</th>
<th>Multivariate Calculus APMA 2120</th>
<th>Intro Physics I PHYS 1425</th>
<th>Intro Physics I Lab PHYS 1429</th>
<th>HSS Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Year 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Intro Chem CHEM 1610</th>
<th>Intro Chem Lab CHEM 1611</th>
<th>Single Variable Calc APMA 1110</th>
<th>Intro to Engineering ENGR 1620</th>
<th>Lang & Tech Society STS 1010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Year 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete the 19-credit ECE Minor by Adding Two Courses:

- Use ECE 5750 as a BME Elective, **add ECE 2330** (use as Technical Elective), use ECE 2630 as the 1st Engineering Elective, and **add ECE 3630** (2nd Engineering Elective).
CURRICULUM CHANGE!

BME 2240 BIOTRANSPORT is now REQUIRED for the Class of 2011 and later.
HSS Elective Requirements

a. Instructional categories generally acceptable for HSS elective credit. A student may normally take any course under any one of these categories, with the exception of those listed under b.

b. Exceptions to 2.a., i.e., courses in the acceptable categories that are NOT suitable for HSS elective credit, generally because of their specialized nature for majors in that field or because they are predominantly skills courses.

ANTH 1090, 3810, 3820, 4991, 4993, 4998, 4999, 5080, 5800, 5870, 5880, 5989
ECON 3710, 3720, 4010, 4350, 4710, 5090, 5100
ENSP 1600
ENWR 1505, 1506, 1510, 2510, 2520
MDST 2010, 3702
MUSI 1310, 1993, 3310, 3320, 3360, 3390, 3993, 4575
PSYC 2200, 2210, 2220, 3005, 3006, 3210, 3870, 3590, 4111, 4125, 4200, 4290, 4330, 4500, 4910, 4970, 4990, 4940, 4980, 5200, 5210, 5260, 5330, 5350, 5401
SOC 4800, 4810, 4820, 4970, 5100, 5110, 5120, 5595, 5596
STS 3993
Technical Electives
3 credits

Chosen from any 2000-level or higher math, science, or engineering course, unless it is a course for non-science majors, it duplicates required BME class work, or it is a "research-for-credit" or capstone design course.

The list on page 8 (this page) shows all the courses that will not count as either a technical or an engineering elective in the BME Major.

Courses that do NOT count as Technical or Engineering electives:

ASTR 3410	BME 4311	ECE 3750* (due to overlap with BME 3310)	PHYS 3040
ASTR 3420	BME 4995	ECE 4907	PSYC 2100
ASTR 3460		ECE 4908	PSYC 2150
ASTR 3470	CHE 2246* (due to overlap with BME 2104)	ECE 4908	PSYC 2210
ASTR 3480	CHE 4995	ENGR 4880	PSYC 2300-3110
ASTR 4440	CHE 4995	ENGR 4890	PSYC 3410-4180
ASTR 4988	CHE 3910	ENGR 4920	PSYC 4300-5200
BIOL 2060	CHEM 3920		PSYC 5260
BIOL 2061	CHEM 3951	EVSC 2010	PSYC 5310
BIOL 2070	CHEM 3961	EVSC 2090	PSYC 5320
BIOL 2071	CHEM 4915	EVSC 2050	PSYC 5500-5650
BIOL 3000	CHEM 4961	EVSC 2220	MAE 3011
BIOL 3200	CHEM 4961	EVSC 2030	MAE 4512
BIOL 3210		EVSC 3020	MAE 4513
BIOL 3230	CE 4991	EVSC 4030	SYS 3055
BIOL 4911	CE 4995	EVSC 4040	SYS 4053
BIOL 4912		EVSC 4050	SYS 4054
BIOL 4913		EVSC 4070	SYS 4055
BIOL 4914	CS 4993	EVSC 4995	No STS
BIOL 4915		EVSC 5030	
BIOL 4916		EVSC 5031	
BIOL 4917			
BIOL 4918			
Engineering Elective Sequence

Engineering Electives

6 Credits

The Engineering Elective is a two-course sequence of 2000-level or higher engineering courses in a single area of concentration. The two courses are chosen from the approved list on this page. Only one BME course may be used in your sequence.

MAY I CREATE MY OWN SEQUENCE?

Yes, with the approval of the Undergrad Program Director. Propose your sequence using the form on page 16.

MAY I USE TWO BME COURSES?

No! The engineering elective is intended to help you build depth in a complementary engineering area. Only one BME course may be part of your sequence.

APMA 3080 does NOT count as an engineering elective. This rule is in effect beginning with the Class of 2011.

Engineering Elective Sequences

Choose any two (2) courses from a single group to create a pre-approved sequence. Prerequisites are in parentheses.

Area 1

- CHE 2202. See also MAE 2100 Thermodynamics
- CHE 2215 Material and Energy Balances
- CHE 3xxx or higher
- CHE 4561, 4562—permission required, use the form on p 16

Area 2

- CHE 2215 Material and Energy Balances
- CHE 2216 Modeling and Simulation in Chem Eng (CHE 2215)
- CHE 3321 Transport Processes I (CHE 2215)
- CHE 3xxx or higher
- CHE 4561, 4562—permission required, use the form on p 16

Area 3

- CS 2110 Software Development Methods
- CS 2102 Discrete Mathematics
- CS 2150 Program and Data Representation (CS 2110, 2102)
- CS 4750 Database Systems (CS 2102, 2150)
- CS 3xxx or higher
- CS 4993, 4501, 5501—permission required, use the form on p 16
- SYS 2202 Data and Information Engineering (CS 2110)
- SYS 3062 Discrete Event Simulation (CS 2110, APMA 3100, 3112)

Area 4

- CS 2102 Discrete Mathematics I
- CS 2150 Program and Data Representation (CS 2110, 2102)
- APMA 5070 Numerical Methods
- CS 3xxx or higher

Area 5

- ECE 2630 Introductory Circuit Analysis
- ECE 3630 Electronics I (ECE 2630)
- ECE 3760 Signals and Systems II (ECE 2630 and ECE 3750 or BME 3310)
- ECE 3xxx (not ECE 3750) or higher
- ECE 5501, 5502—permission required, use the form on p 16
- BME 4641 Bioelectricity (ECE 2630, BME 3310) or BME 7782 Medical Imaging Systems Theory or BME 4550 BME Electronics Lab (may not be paired with ECE 2630)

Area 6

- ECE 2066 Science of Information
- ECE/CS 2330 Digital Logic Design
- ECE/CS 3330 Computer Architecture (CS 2110, ECE/CS 2330)
- ECE 435 Computer Organization and Design (ECE 3330)

Area 7

- CE 2300 Statics. See also MAE 2300
- CE/MAE 2310 Strength of Materials (CE/MAE 2300)
- CE/MAE 2320 Dynamics (CE/MAE 2300)
- CE 2210 or MAE 3210 Fluid Mechanics
- CE 3xxx or higher (not CE 3000, 3100, 3400, 4000, 4030, 4100, 4110, 4400, 4410, 4810)
- CE 4500—permission required, use the form on p 16
- BME 4414 Biomaterials

Area 8

- MAE 2100 Thermodynamics: See also CHE 2202
- MAE 3120 Thermal Systems Analysis (MAE 2100)
- MAE 3210 Fluid Mechanics (MAE 2100)
- MAE 3xxx or higher
- MAE 4501, 4502—permission required, use the form on p 16

Area 9

- MAE 2300 Statics: See also CE 2300
- BME 4280 Motion Biomechanics
- MAE 3xxx or higher (incl BME 4550 Orthopedic Injury Biomech)
- MAE 4501-4502—permission required, use the form on p 16

Area 10

- MSE 2090 Intro to the Science and Engineering of Materials
- CHE 2202 / MAE 2100 Thermodynamics
- BME 4890 Nanomaterials Engineering or BME 4414 Biomaterials
- MSE 3080 Corrosion (MSE 2090)
- MSE 3xxx or higher
- MSE 4960—permission required, use the form on p 16
- CE/MAE 2310 Strength of Materials (CE/MAE 2300)
- CHE 4442 Applied Surface Chemistry

Area 11

- SYS 2001 Systems Engineering Concepts
- SYS 2202 Data and Information Engineering (CS 2110)
- SYS 3021 Deterministic Decision Models (SYS 2001, APMA 3080)
- SYS 3xxx or higher, except SYS 4081
- SYS 4081—permission required, use the form on p 16
- BME 4550 Systems Bioengineering Modeling and Experimentation

Area 12

- TMP 3051 Technology and Product Development Life Cycle
- SYS 2057 Management of E-Commerce Systems
- BME 4550 BME Advanced Design
BME Electives

9 Credits

Chosen from any 3000-level or higher BME elective, except BME 4311. One of the following non-BME courses may be included as a BME elective: CHE 3347, CHE 4448, or ECE 5750. Only 3 credits of BME 4995 may be used as a BME Elective.

BME Electives, 2009-2010

Fall 2009

BME 4414 Biomaterials. 3.0 Credits. Edward Botchwey. Prerequisite: BME 2101, BME 2104 or CHE 2246, 3rd or 4th year standing, or instructor permission.

BME 4280 Motion Biomechanics. 3.0 Credits. Rich Kent. Prerequisite: BME 2101, BME 2220, or instructor permission.

BME 4641 Bioelectricity. 3.0 Credits. Yong Kim. Prerequisite: BME 3310 or ECE 2630, and BME 2101, or instructor permission.

BME 4890 Nanomedicine. 3.0 Credits. Kimberly Kelly. Prerequisite: BME 2104 or CHE 2246, BME 2220, 4th year standing, or instructor permission.

BME 4550 Systems Bioengineering Modeling & Experimentation. 3.0 Credits. Timothy Allen, Jason Papin, Shayn Peirce-Cottler. Prerequisite: BME 3080, BME 3315, and instructor permission.

BME 4550 Special Topics Quantitative Biological Reasoning. 3.0 Credits. Kevin Janes. Prerequisite: 4th year standing and instructor permission.

Spring 2010

BME 3636 Neural Network Models of Cognition and Brain Computation. 3.0 Credits. William Levy. Cross-listed as PSYC 5330. Prerequisite: BME 2101, and CS 1110, or instructor permission.

BME 4806 Biomedical Applications of Genetic Engineering. 3.0 Credits. Brent French. Prerequisite: BME 2101, BME 2102, BME 2104 or CHE 2246, and 3rd/4th year standing, or instructor permission.

BME 4550 BME Electronics Lab. 3.0 Credits. Yong Kim. Prereq: 2nd year standing.

BME 4550 BME Advanced Design. 3.0 Credits. Timothy Allen. Prerequisite: BME 2000 and instructor permission.

Fall/Spring 2009-2010

BME 4995 BME Advanced Projects. Varies. Prerequisite: instructor permission and approval of the BME Undergraduate Program Director. Only 3 credits (total) of BME 4995-454 will count as BME elective. Another 3 credits will count as an Unrestricted elective.

BME 4550 Special Topics in Biomedical Engineering. Prerequisite: 3rd or 4th year standing or instructor permission.

BME 4993 Independent Study. Prerequisite: Instructor permission and approval of the Undergrad Program Director.

May I use a graduate level BME course as “BME” Electives? Yes, with instructor permission. The instructor will need to add you to his course roll in the SIS and you may need to fill a Dean’s Office form called “Undergraduate Request to Take Graduate Courses.”
What is an “Optional Bioengineering Focus Area?”
You have quite a few elective “buckets” to fill in the BME major (technical, engineering, BME, unrestricted, etc). One strategy is to use these electives to build depth in a certain focus area. This list will help you to do so.

Is this required?
No - it’s optional!

Do I take every class listed in a certain focus area?
No. The list is a guide.

Which courses will count as my engineering elective sequence?
The first two courses in any focus area will count as an engineering elective sequence. Most focus areas encompass multiple engineering elective sequence options.

This is an optional advising tool to help students use their various elective “buckets” to build depth in a relevant area. Prerequisites are in parentheses.

Biomaterials and Regenerative Medicine
- MSE 2090 Intro to the Science and Engineering of Materials
- BME 4414 Biomaterials
- BME 4417 Tissue Engineering
- CHE 4449 Polymer Chemistry and Engineering (inst. permission)

Pharmaceutical Biotechnology
- CHE 2215 Material and Energy Balances
- CHE 3321 Transport Processes I (CHE 2215)
- CHE 3347 Biochemical Engineering (CHE 3321)
- BME 4890 Nanomedicine
- BME 4550 Systems Bioengineering Modeling and Experimentation
- CHE 4442 Applied Surface Chemistry

Computational Systems Bioengineering
- SYS 3021 Deterministic Decision Models (SYS 2001)
- CS 2102 Discrete Mathematics I (CS 2110)
- BIOL 4160 Functional Genomics (Inst. permission)
- APMA 3080 Linear Algebra
- BME 4550 Systems Bioengineering Modeling and Experimentation

Biomedical Software
- CS 2110 Software Development Methods
- CS 2102 Discrete Mathematics I (CS 2110)
- CS 2150 Program and Data Representation (CS 2110, 2102)
- CS 3240 Advanced Software development Techniques (CS 2150)

Musculoskeletal Biomechanics
- MAE/CE 2300 Statics
- MAE/CE 2310 Strength of Materials (MAE 2300)
- MAE 2320 Dynamics (MAE 2300)
- BME 4280 Motion Biomechanics

Neural Systems Engineering
- ECE 2630 Introductory Circuit Analysis
- ECE 3630 Electronics I (ECE 2630)
- BME 3636 Neural Network Models
- BME 4641 Bioelectricity
- BIOL 3170 Neurobiology

Entrepreneurship
- TMP 3051 Technology and Product Development Life Cycle
- BME 4550 Spc Tpc BME Advanced Design
- CS 4753, CE 4000, SYS 4044, SYS 5044

Bioinstrumentation
- ECE 2630 Intro to Circuits
- ECE 3630 Electronics I (ECE 2630)
- ECE 2330 Digital Logic Design
- ECE 3760 Signals and Systems II (ECE 2630, BME 3310)
- ECE 3632 Electronics II (ECE 3630)

Signal Processing
- ECE 2630 Intro Circuit Analysis
- ECE 3760 Signals and Systems II (ECE 2630, BME 3310)
- ECE 2066 Science of Information
- ECE 5750 Digital Signal Processing

Biomedical Imaging (see page 5!)
- ECE 2630 Intro Circuit Analysis
- ECE 3760 Signals & Systems II (ECE 2630, ECE 3750 or BME 3310)
- ECE 5750 Digital Signal Processing (ECE 3750 or BME 3310, ECE 3760)
- BME 7782 Medical Imaging Systems Analysis
- Graduate-level BME imaging courses, as appropriate
- ECE 6782 Digital Image Processing

Clinical Applications in Biomedical Engineering
- MAE 2300 Statics
- BME 4414 Biomaterials or BME 4417 Tissue Engineering
- BME 4280 Motion Biomechanics
- BIOL 5010 Biochemistry (prereq organic chemistry)
- Advanced Biology course, as appropriate, such as BIOL 3080, BIOL 3090, BIOL 3140, BIOL 3240

Nanomedicine Engineering
- BME 4890 Nanomedicine Engineering
- MSE 4055 Nanoscale Science and Technology (MSE 3670, PHYS 2320, PHYS 2620, or CHEM 3410 or CHEM 3820)
- Physical Chemistry (Organic Chemistry)
- BME 4414 Biomaterials or BME 4417 Tissue Engineering
Course Descriptions: BME 2000-3636

BME 2000 - (3) REQUIRED, Fall
Intro to BME Design & Discovery
Prerequisite: CS 1110, PHYS 1425, and ENGR 1620, or instructor permission. Provides an overview of the BME discipline and major sub-disciplines (biomechanics, genetic engineering, tissue engineering, bioelectricity, imaging, cellular engineering, computational systems biology), covers conceptual and detail design processes, and introduces quantitative tools utilized throughout the BME curriculum. Includes formulation and execution of a major design project.

BME 2101 - (3) REQUIRED, Fall
Physiology for Engineers I
Prerequisite: CHEM 1610, and PHYS 1425, or instructor permission. Studies how excitable tissue, nerves and muscle, and the cardiovascular and respiratory systems work. Focuses on understanding mechanisms and includes an intro to structure, an emphasis on quantitative function, and integration of hormonal and neural regulation and control.

BME 2102 - (3) REQUIRED, Spring
Physiology for Engineers II
Prerequisite: BME 2101, or instructor permission. Introduces the physiology of the kidney, salt and water balance, gastrointestinal system, endocrine system, and central nervous system, with reference to diseases and their pathophysiology.

BME 2104 - (3) REQUIRED, Spring
Cell & Molecular Biology for Engineers
Prerequisite: CHEM 1610 and BIOL 2101, or instructor permission. Introduces the fundamentals of cell structure and function, emphasizing the techniques and technologies available for the study of cell biology. A problem-based approach is used to motivate each topic. Divided into three general sections: cell structure and function includes cell chemistry, organelles, enzymes, membranes, membrane transport, intracellular compartments and adhesion structures; energy flow in cells concentrates on the pathways of glycolysis and aerobic respiration; information flow in cells focuses on modern molecular biology and genetic engineering, and includes DNA replication, the cell cycle, gene expression, gene regulation, and protein synthesis. Also presents specific cell functions, including movement, the cytoskeleton and signal transduction. Students may not receive credit for both CHE 2246 and BME 2104.

BME 2220 - (3) REQUIRED, Spring
Biomechanics
Prerequisite: APMA 2120, 2130, and BME 2101, or instructor permission. Introduces the principles of continuum mechanics of biological tissues and systems. Topics include 1) review of selected results from statics and strength of materials, continuum mechanics, free-body diagrams, constitutive equations of biological materials, viscoelastic models, and fundamental concepts of fluid mechanics and mass transport; 2) properties of living tissue; 3) mechanical basis and effects of pathology and trauma, 4) introduction to mechanotransduction, circulatory transport, growth and remodeling, and tissue-engineered materials, and 5) low Reynolds number flows in vivo and in microsystems.

BME 22240 - (3) REQUIRED, Spring
Biotransport
Prerequisite: APMA 2120, 213, BME 2101, 2104 or equivalent, or instructor permission. Biotransport in biological living systems is a fundamental phenomenon important in all aspects of the life cycle. Course will introduce principles and application of fluid and mass transport processes in cell, tissue and organ systems. Topics include introduction to physiological fluid mechanics in the circulation and tissue, fundamentals of mass transport in biological systems, effects of mass transport and biochemical interactions at the cell and tissue scales, and fluid and mass transport in organs.

BME 3310 - (3) REQUIRED, Fall
Biomedical Systems Analysis & Design.
Prerequisites: APMA 2130, CS 1110, and PHYS 1425, or instructor permission. Presents the analytical tools used to model signals and linear systems. Specific biomedical engineering examples include multicompart- ment modeling of drug delivery, modeling of dynamic biomechanical systems, and electrical circuit models of excitable cells. Major topics include terminology for signals and systems, convolution, continuous time Fourier transforms, electrical circuits with applications to bioinstrumentation and biosystems modeling, and applications of linear system theory. Students may not receive credit for both ECE 3750 and BME 3310.

BME 3315 - (3) REQUIRED, Spring
Computational BME
Prerequisite: BME 2101, 2104, and 2220, or instructor permission. Introduces techniques for constructing predictive or analytical engineering models for biological processes. Teaches modeling approaches using example problems in transport, mechanics, bioelectricity, molecular dynamics, tissue assembly, and imaging. Problem sets will include 1) linear systems and filtering, 2) compartmental modeling, 3) numerical techniques, 4) finite element / finite difference models, and 5) computational automata models.

BME 3080, 3090 - (4+4) REQUIRED, Fall, Spring
BME IDEAS Lab I & II
Prerequisite: BME 2101, 2104, and 2220, and 3rd year standing in the BME major, or Inst. permission. Yearlong course to integrate concepts and skills from prior courses in order to formulate and solve problems in biomedical systems, including experimental design, performance, and analysis. Lab modules include testing in tissues/cells and manipulation of molecular constituents.
of living systems to determine their structural and functional characteristics for design of therapeutic or measurement systems. Methods include biochemical, physiological, cell biology, mechanical, electrical and computer systems, chemical, imaging, and other approaches.

BME 3636 - (3) ELECTIVE, Spring

Neural Network Models of Cognition and Brain Computation. Cross-listed as PSYC 5330. Prerequisite: CS 1110, BME 2101, or instructor permission. Introduction to neural networks research, specifically biologically-based networks that reproduce cognitive phenomena. The goal is to teach the basic thinking and methodologies used in constructing and understanding neural-like networks.

BME 4063, 4064 - (3+3) REQUIRED, Fall, Spring

Biomedical Engineering Capstone Design I & II

Prerequisite: Fourth year standing in BME major, or instructor permission. A year-long design project in biomedical engineering required for BME majors. Students select, formulate, and solve a design problem - either for a device or system "design & build" project or a "design of experiment" research project. Projects use conceptual design, skills obtained in the integrated lab, and substantial literature and patent reviews. Projects may be sponsored by BME faculty, medical doctors, and/or companies. Students may work on their own with outside team members when appropriate or with other SEAS students in integrative teams.

BME 4280 - (3) ELECTIVE, Spring

Motion Biomechanics

Prerequisite: BME 2101, 2220, or instructor permission. Focuses on the study of forces (and their effects) that act on the musculoskeletal structures of the human body. Based on the foundations of functional anatomy and engineering mechanics (rigid body and deformable approaches); students are exposed to clinical problems in orthopedics and rehabilitation.

BME 4414 - (3) ELECTIVE, Fall

Biomaterials

Prerequisite: BME 2101, 2104 or equivalent, 3rd or 4th year standing, or instructor permission. This course will provide an introduction to biomaterials science and biological interactions with materials, including an overview of biomaterials testing and characterization. The emphasis of this course, however, will be on emerging novel strategies and design considerations of biomaterials. Areas of concentration will include the use of polymers and ceramics in biomaterials today, drug delivery applications, tissue engineering from both an orthopaedic and vascular perspective, and nanotechnology related to biomaterials. Specific attention will also be paid to the in vitro and in vivo testing of biomaterials, and a review of current research in the field.

BME 4417 - (3) ELECTIVE, Spring

Tissue Engineering

Prerequisite: APMA 2130, BME 2101, and 2104 or equivalent, or instructor permission. Introduces the fundamental principles of tissue engineering. Topics include: tissue organization and dynamics, cell and tissue characterization, cell-matrix interactions, transport processes in engineered tissues, biomaterials and biological interfaces, stem cells and interacting cell fate processes, and tissue engineering methods. Examples of tissue engineering approaches for regeneration of cartilage, bone, ligament, tendons, skin and liver are presented.

BME 4550 - (3+3) ELECTIVE, Fall, Spring

Special Topics in Biomedical Engineering

Prerequisite: varies. Applies engineering science, design methods, and system analysis to developing areas and current problems in biomedical engineering.

BME 4550 - (3) ELECTIVE, Fall

Systems Bioengineering Modeling and Experimentation

Prerequisite: Fourth year standing in BME major, or instructor permission. Introduces techniques for constructing mathematical and computational models of vascular biological processes and utilizing experimental methods to validate those models at many levels of organizational scale, from genome to whole-tissue. In each of three modules, teams complete group modeling projects that apply the modeling techniques specific to the particular module. Teams will also conduct experiments relevant to the biological question of each module. Topics to be covered include choice of modeling techniques appropriate to addressing particular biological problems at different scales, quantitative characterization of biological properties, assumptions and model simplification, parameter estimation and sensitivity analysis, model verification and validation, and integration of computational modeling with experimental approaches.

BME 4550 - (3) ELECTIVE, Spring

BME Electronics Lab

Prerequisite: 2nd year standing. Course objectives: (1) To provide an understanding of basic techniques involving electrical and electronic circuit analysis; and (2) To enable students to apply the knowledge and techniques in electrical systems to problems in biomedical engineering. These goals will be achieved through lectures and labs in combination.

BME 4550 - (3) ELECTIVE, Fall

Medical Imaging Systems Theory

Prerequisite: ECE 3750 or BME 3310 or equivalent exposure to linear systems theory, and instructor permission. Develops an intuitive understanding of the mathematical systems theory needed to understand and design biomedical imaging systems, including ultrasound, magnetic resonance imaging and computed tomography.
Emphasis is on 2D continuous systems, but 1D and discrete systems are also covered. Topics include multidimensional Fourier transform theory, image reconstruction techniques, diffraction theory, and Fourier optics.

BME 4550 - (3) ELECTIVE, Fall

Quantitative Biological Reasoning
Prerequisite: 4th year standing and instructor permission. Provides students with a quantitative framework for identifying and addressing important biological questions at the molecular, cell, and tissue levels. Part I covers methods, with an emphasis on the biochemical, biophysical, and mathematical themes that emerge repeatedly in quantitative experiments. Discussions will be preceded by primary literature that illustrate how in-depth understanding of such themes led to significant conceptual advances in biochemistry, molecular biology, and cell biology. Part II will focus on how quantitative methods combine to aid scientific logic. Topics will include practical implementations of the scientific method, falsification of hypotheses, and strong inference. Course concludes with an introduction to how quantitative biological reasoning can be effectively presented through scientific writing and information design.

BME 4550 - (3) ELECTIVE, Spring

Orthopedic and Injury Biomechanics
Prerequisite: Instructor permission. In this course students will gain working knowledge of the functions and mechanical properties, including failure, of musculoskeletal tissues, how these tissue combine to form structures, the properties and behavior of those structures, the role of mechanical forces in the formation, morphology, nature, and injury of those material and structures, and the failure mechanics and thresholds of anatomical structures in the head, neck, thorax, abdomen, and extremities.

BME 4641 - (3) ELECTIVE, Fall

Bioelectricity
Prerequisite: BME 3310 or ECE 2630, BME 2101, or instructor permission. Studies the biophysical mechanisms governing production and transmission of bioelectric signals, measurement of these signals and their analysis in basic and clinical electrophysiology. Introduces the principles of design and operation of therapeutic medical devices used in the cardiovascular and nervous systems. Includes membrane potential, action potentials, channels and synaptic transmission, electrodes, electroencephalography, electromyography, electrocardiography, pacemakers, defibrillators, and neural assist devices.

BME 4783, 4784 - (3) ELECTIVE

Not offered 2009-2010 academic year

BME 4806 - (3) ELECTIVE, Spring

Biomedical Applications of Genetic Engineering
Prerequisite: BME 2101, 2102, and 2104, and 3rd/4th year standing, or instructor permission. Provides a grounding in molecular biology and a working knowledge of recombinant DNA technology, thus establishing a basis for the evaluation and application of genetic engineering in whole animal systems. Beginning with the basic principles of genetics, this course examines the use of molecular methods to study gene expression, deliver viral and non-viral vectors, and its critical role in health.

BME 4890 - (3) ELECTIVE, Fall

Nanomedicine Engineering
Prerequisite: BME 2104 or CHE 2246, BME 2220, or 4th year standing, or instructor permission. Recommended: BME 2240 or CHE 3321. Students will design treatment strategies for cancer and cardiovascular disease based on molecular bioengineering principles. Special topics will include design of nanoparticle drug and gene delivery platforms, materials biocompatibility, cancer immunotherapy, and molecular imaging.

BME 4993 - (1-3) ELECTIVE, Fall, Spring

Independent Study
Prerequisite: instructor permission. In-depth study of a biomedical engineering area by an individual student in close collaboration with a departmental faculty member. Requires advanced analysis of a specialized topic in biomedical engineering that is not covered by current offerings. Requires faculty contact time and assignments comparable to regular course offerings. **Requires approval by UG Program Director. Use form on p 15.**

Only 3 credits of BME 4995 will count as BME elective. Another 3 credits will count as an Unrestricted Elective.
Required Approval Form
BME Independent Study (BME 4993) - 3 credits maximum

Independent Study is an in-depth exploration of a technical area in biomedical engineering for which there is no formal course offering. It exhibits the hallmarks of a formal course offering - e.g. regular and significant faculty contact time, assigned reading, regular homework or projects, and a final exam or paper. Requires approval from the Undergraduate Program Director. Use this form to propose and describe your topic.

- Listed as BME 4993 "BME Independent Study."
- Up to 3 credits of BME 4993 will count as a BME Elective in the BME Major.
- Does NOT count toward the BME Minor.

Procedure:

Your Name: ________________________________ BME Advisor: _______________
Today’s Date: _____________ Year of Graduation: _______ Your Email: ______________________

1) Instructor information. If the proposed instructor is not a primary BME primary faculty member, see the Undergrad Program Director for special instructions.

 Instructor’s Name (print): ________________________________

2) Attach a one-page COURSE MEMO. Include 1) a one-paragraph Course Description, 2) Planned Assignments for the semester, 3) Textbook and/or reading list, 4) and Meeting Times and Frequency.

3) SIGNATURES. Have the course instructor sign the Course Memo. Return the signed memo and this form to the BME Undergrad Coordinator, MR5 2010. You will be informed of the success of your petition via email.

Approved: _____________________________________
BME Undergraduate Program Director
Required Approval Form
Substituting a Core Course / Replacing a Requirement

Name: ___________________ Major: ___________________ BME Advisor: _______________

Today's Date: _____________ Year of Graduation: _______ Email: ______________________

Procedure: Fill out this form (duplicate if necessary for multiple requests) and return to Undergrad Coordinator in MR5 2010. You will be informed of the success of your petition via email.

Course/Requirement #1

1) What course/requirement would you like to replace? __________________________
2) What would you like to replace it with? __________________________
3) Reason:

Approved: _____________________________________
BME Undergraduate Program Director

Course/Requirement #2

1) What course/requirement would you like to replace? __________________________
2) What would you like to replace it with? __________________________
3) Reason:

Approved: _____________________________________
BME Undergraduate Program Director
Required Approval Form for BME Advanced Projects (BME 4995, “Research-for-Credit”)

Consists of the design, execution, and analysis of lab work, computational modeling, or theoretical analysis in a biomedical engineering subject area. Requires a comprehensive final report describing methods and results.

You may work with any BME primary faculty member. It is possible to work with non-BME faculty, if a BME primary faculty member agrees to co-advice your project. In this case, the BME faculty member is listed as the course instructor and assigns the grade, in consultation with the research mentor. Under certain circumstances, this rule may be waived. See the Undergrad Coordinator for details.

Use BME 4995 “BME Advanced Projects.” All projects must approved by the Undergraduate Program Director using this form.

- You must submit this form for approval EACH SEMESTER you plan to do research-for-credit (even for a continuing project).
- For each credit hour earned, you must spend at least 3-4 hours per week in the lab, for a minimum of 10 hours/week for 3 credit-hour course.
- Relationship between Advanced Projects & Capstone Projects: Unless the two projects are entirely separate, you may NOT earn credit for BME 4995 at the same time you are earning credit for BME 4063, 4064.
- BME Majors may count up to six credits (total) toward the degree. Three (3) credits can be used as a BME Elective, and the other three (3) credits can be used as an Unrestricted Elective.

Procedure

Your Name: __ Email: _______________________ Today’s Date: _______________________________

Lab Name: ___ Research Advisor’s name (print): _______________________________________

If your research advisor is not a primary BME faculty member, which primary BME faculty member is co-advising this project? __

Will you be attending lab meetings? (circle one) Yes No If no, why not? ___

1) Attach a PROJECT PROPOSAL (half-page). The proposal should include i) Project Title and Study Name (more specific than title), ii) Purpose/Objective of your proposed project, iii) your Hypothesis (if applicable), iv) the Experimental Design (i.e. experimental conditions and measurable output), v) your Methods, and vi) the Significance of your research (what is the impact of your results in the field?)

2) Attach a PROJECT EXPECTATIONS STATEMENT (one paragraph). Here you describe the project guidelines worked out between you, your research mentor, and (if applicable) the BME primary faculty member co-advising your project. You must cover i) Days and times you are scheduled to work in the lab, ii) How often you will be meeting with your research mentor, iii) When your final report is due and iv) Other expectations, including required background literature, monthly progress reports, etc. If you are working in a non-BME lab, you must also report how often you plan to meet with your BME primary advisor.

3) SIGNATURES. Both you and your Research Advisor must sign the Project Proposal / Expectations Statement. If you plan to work in a non-BME lab, your BME primary advisor must sign, too. Return this form and the signed Project Proposal / Expectations Statement to the Undergraduate Coordinator (MR5 2010). You will be informed of the success of your petition via email.

Approved: _____________________________________
BME Undergraduate Program Director