A mathematical model of force transmission from intrafascicularly terminating muscle fibers

Bahar Sharafi, Silvia S. Blemker

A R T I C L E I N F O

Article history:
Accepted 29 April 2011

Keywords:
Intrafascicularly terminating fibers
Endomysium
Lateral force transmission
Muscle mechanics
Micromechanical modeling

A B S T R A C T

Many long skeletal muscles are comprised of fibers that terminate intrafascicularly. Force from terminating fibers can be transmitted through shear within the endomysium that surrounds fibers or through tension within the endomysium that extends from fibers to the tendon; however, it is unclear which pathway dominates in force transmission from terminating fibers. The purpose of this work was to develop mathematical models to (i) compare the efficacy of lateral (through shear) and longitudinal (through tension) force transmission in intrafascicularly terminating fibers, and (ii) determine how force transmission is affected by variations in the structure and properties of fibers and the endomysium. The models demonstrated that even though the amount of force that can be transmitted from an intrafascicularly terminating fiber is dependent on fiber resting length (the unstretched length at which passive stress is zero), endomysium shear modulus, and fiber volume fraction (the fraction of the muscle cross-sectional area that is occupied by fibers), fibers that have values of resting length, shear modulus, and volume fraction within physiologic ranges can transmit nearly all of their peak isometric force laterally through shearing of the endomysium. By contrast, the models predicted only limited force transmission ability through tension within the endomysium that extends from the fiber to the tendon. Moreover, when fiber volume fraction decreases to unhealthy ranges (less than 50%), the force-transmitting potential of terminating fibers through shearing of the endomysium decreases significantly. The models presented here support the hypothesis that lateral force transmission through shearing of the endomysium is an effective mode of force transmission in terminating fibers.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The majority of long muscles in vertebrates contain fibers that terminate without reaching a tendon (e.g., Barrett, 1962; Gans et al., 1989; Gaunt and Gans, 1990; Hijikata et al., 1993; Loeb et al., 1987; Ounjian et al., 1991; Paul, 2001). The force produced in a motor unit containing intrafascicularly terminating fibers is proportional to the total cross-sectional area of all fibers (Ounjian et al., 1991). Since these fibers do not insert into a tendon at one or both ends, how do they transmit force to the tendon?

Previous studies have suggested that force generated in intrafascicularly terminating fibers (herein called “terminating fibers”) is transmitted to the endomysium (Huijing, 1997; Monti et al., 1999; Purslow, 2002). Force is transmitted from the contractile proteins to the endomysium via costameres at Z-disks along the length of the fiber (Ervasti, 2003; Patel and Lieber, 1997; Bloch and Gonzalez-Serratos, 2003). Once force is transmitted to the endomysium there are two pathways through which it can be exerted onto the tendon: (i) laterally (in the direction transverse to the fiber) to the surrounding muscle tissue via shear within the endomysium that surrounds the fiber, or (ii) longitudinally through tension within the endomysium that extends from the fiber end to the tendon. Various experiments have established the existence of lateral force transmission within bundles of fibers (Street, 1983), within whole muscles (Huijing et al., 1998; Jaspers et al., 1999), and between muscles of the same compartment (Maas et al., 2001). Force transmission through shear has the advantage that shear stresses act over a large area (the entire surface of the fiber) compared to tensile stresses which act over the small cross-sectional area of the endomysium. However, force transmission through tension has the advantage that the endomysium is stiffer in tension than in shear (estimates of the tensile and shear moduli of the endomysium are listed in Table 1). While it is clear that force can be transmitted both laterally and longitudinally within muscle, it is
unclear which pathway dominates in force transmission from terminating fibers.

The purpose of this work was to (i) compare the effectiveness of lateral and tensile force transmission in terminating fibers, and (ii) determine how force transmission is affected by variations in the structure and properties of fibers and the endomysium. We developed mathematical models to achieve these goals because it would be virtually impossible to design an experiment capable of determining the force pathway for an individual terminating fiber under physiological conditions (i.e., within a muscle) and to independently explore the effects of variations in muscle microstructure properties. We created both analytical and finite element (FE) models of terminating fibers, and predicted the ability of terminating fibers to transmit force through both shear and tension within the endomysium. We used these models to analyze how the amount of force transmitted is affected by resting length, endomysium shear modulus, fiber volume fraction (the fraction of muscle cross-sectional area that is occupied by fibers), and fiber cross-sectional geometry.

2. Methods

2.1. Analytical models

In order to compare the effectiveness of lateral and longitudinal force transmission in terminating fibers, we created two analytical models of force transmission. The first model predicts force transmitted solely through shear within endomysium, while the second model predicts force transmitted solely through tension within endomysium.

Both models assumed that the terminating fiber is attached to a tendon at one end but terminates within the fascicle at the other end. In both the shear and the tensile models, the tensile stress–strain behavior of the fiber is given by (Blemker et al., 2005)

$$\sigma_{\text{fiber}} = \frac{A_{\text{fiber}}}{A_{\text{fiber}} + \lambda \sigma_{\text{endo}}},$$

where $\lambda = l_0/l_f$ is the fiber stretch ($\lambda < 1$ for a shortening fiber), l_0 is the initial fiber length, and A_{fiber} is the initial fiber cross-sectional area and is equal to fiber resting length, $\sigma_{\text{endo}} = 30$ kPa is the peak isometric stress, $p_{\text{fiber}} = 1$ is the tensile modulus of the fiber, and x represents the activation level ($x = 1$ for maximal activation). In Eq. (2.1.1) the simplifying assumption has been made that optimal fiber length (the length at which the fiber generates its peak isometric stress) is equal to the resting or unstretched length of the fiber ($\lambda = 1$). Fiber force is equal to

$$F_{\text{fiber}} = A_{\text{fiber}} / \lambda \sigma_{\text{endo}},$$

where σ_{endo} is given by Eq. (2.1.1). A_{fiber} is the initial fiber cross-sectional area, and the following substitution was made for fiber area A_{fiber} based on the assumption that muscle fibers are incompressible: $A_{\text{fiber}} = A_0 / \lambda$.

2.1.1. Analytical shear model

The shear model (Fig. 1) simulates the transmission of force generated in the terminating fiber through shearing of the endomysium that encases it to the surrounding muscle tissue. The model assumes that the surrounding muscle tissue is held at a constant length and that its deformation in response to the contractile force of the terminating fiber is negligible.

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting length of terminating fibers (cm)</td>
<td>4–20</td>
<td>human sartorius (Heron and Richmond, 1993)</td>
</tr>
<tr>
<td></td>
<td>4.5–6.3</td>
<td>cat tibialis anterior (Ounjian et al., 2011)</td>
</tr>
<tr>
<td></td>
<td>2–4</td>
<td>guinea pig sternomastoid (Young et al., 2000)</td>
</tr>
<tr>
<td></td>
<td>2–3</td>
<td>cat sartorius, tenuissimus, and semitendinosus (Loeb et al., 1987)</td>
</tr>
<tr>
<td>Fiber diameter (μm)</td>
<td>30</td>
<td>(Heron and Richmond, 1993)</td>
</tr>
<tr>
<td></td>
<td>50–80</td>
<td>(Ounjian et al., 2011)</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>(Young et al., 2000)</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>(Loeb et al., 1987)</td>
</tr>
<tr>
<td>$L_0/2r_0$ (ratio of fiber resting length to diameter, dimensionless)</td>
<td>800–4000</td>
<td>(Heron and Richmond, 1993)</td>
</tr>
<tr>
<td></td>
<td>560–1300</td>
<td>(Ounjian et al., 2011)</td>
</tr>
<tr>
<td></td>
<td>400–800</td>
<td>(Young et al., 2000)</td>
</tr>
<tr>
<td></td>
<td>303–454</td>
<td>(Loeb et al., 1987)</td>
</tr>
<tr>
<td>Fascicle length (L_{fascicle}, cm)</td>
<td>50</td>
<td>(Heron and Richmond, 1993)</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>(Ounjian et al., 2011)</td>
</tr>
<tr>
<td></td>
<td>4–5</td>
<td>(Young et al., 2000)</td>
</tr>
<tr>
<td></td>
<td>7–11.5</td>
<td>(Loeb et al., 1987)</td>
</tr>
<tr>
<td>L_0/L_{fascicle} (ratio of fiber resting length to fascicle length, dimensionless)</td>
<td>0.08–0.4</td>
<td>(Heron and Richmond, 1993)</td>
</tr>
<tr>
<td></td>
<td>0.6–0.84</td>
<td>(Ounjian et al., 2011)</td>
</tr>
<tr>
<td></td>
<td>0.4–1</td>
<td>(Young et al., 2000)</td>
</tr>
<tr>
<td></td>
<td>0.17–0.43</td>
<td>(Loeb et al., 1987)</td>
</tr>
<tr>
<td>Endomysium shear modulus (G_{endo}, kPa)</td>
<td>O(3.87)</td>
<td>(Morrow et al., 2010)</td>
</tr>
<tr>
<td></td>
<td>40 (Friden and Lieber, 2003; Lieber et al., 2003)</td>
<td></td>
</tr>
<tr>
<td>Endomysium tensile modulus (C_{endo}, kPa)</td>
<td>O(2.5)</td>
<td>(Magid and Law, 1985)</td>
</tr>
<tr>
<td></td>
<td>40 (Friden and Lieber, 2003)</td>
<td></td>
</tr>
<tr>
<td>Fiber volume fraction (dimensionless)</td>
<td>38.5 ± 13.6% for spastic muscle, 95.0 ± 8.8% for healthy muscle (Lieber et al., 2003)</td>
<td></td>
</tr>
</tbody>
</table>

Fiber diameters are approximate and are based on estimates from the images provided in the cited articles.

[1] We used muscle length in place of fascicle length where fascicle lengths were not reported.

[2] A shear modulus has not been measured for the endomysium, however Trotter and Purslow (1992) and Trotter et al. (1995) used 5 kPa as a lower estimate. Morrow et al. (2010), measured 3.87 kPa as the along-fiber shear modulus of muscle. Previous work suggests that the along-fiber shear modulus of muscle is of the same order of magnitude as that of endomysium (Sharafi and Blemker, 2010).

[3] Magid and Law (1985) reported no significant difference between the tensile modulus of skinned fibers and those of a whole muscle in frog semitendinosus. It should therefore follow that the endomysium tensile modulus is of the same order of magnitude as the fiber (2.6 ± 0.25 kPa).

[4] $C_{\text{endo}} = 40$ kPa was calculated based on the reported stress-versus-sarcomere-length plots for fiber bundles (Lieber et al., 2003). Based on a healthy fiber volume fraction of 95%, the tangent modulus for the endomysium can be calculated as 268 kPa. In our model of the tensile behavior of endomysium (Appendix B), the tangent modulus is equal to $\kappa_{\text{endo}} = 6.6C_{\text{endo}}$. Which results in $C_{\text{endo}} = 40$ kPa.
We numerically solved Eq. (2.1.2) for λ at $\alpha = 1$ in MATLAB (MathWorks, Inc., Natick, MA). We subsequently calculated the force generated in the fiber using Eq. (2.1.2).

The goal of our analysis was to identify the range of values for fiber length, volume fraction, and endomysium moduli that are required for effective force transmission through shearing of the endomysium. To provide a full understanding how these parameters affect force transmission, we included values for fiber length, volume fraction, and endomysium moduli that were outside the range of values reported in the literature. Then, to assess the efficacy of lateral force transmission through shear in actual muscles, we compared these values to those reported in the literature (Table 1).

2.1.2. Analytical tensile model

The tensile model assumed that the active fiber force is transmitted via tension through the endomysium that extends from the terminating fiber end to the opposite tendon (Fig. 2). Both the fiber and endomysium were assumed to be initially at their unstretched lengths and the fascicle is held at a fixed length of L_0.

Once activated, the fiber shortens until its active force is balanced by the passive tensile force within the endomysium. We calculated the final length of the fiber by determining the equilibrium between the active fiber force and the tensile force within the endomysium in series with the fiber (Appendix B).

2.2. Finite element models

We created FE models of different fiber geometries in order to investigate the following simplifying assumptions made to create the analytical shear model: (i) shear strain is constant across the thickness of the endomysium, (ii) the fiber is rigid in shear, (iii) the fiber and endomysium cross-sections are circular, and (iv) the surrounding fibers can be represented by constraining the outer surface of the endomysium layer in the z direction. We created a set of FE models with a circular cross-section identical to the analytical model (Fig. 3A) in order to investigate the effects of nonuniform shear strains through the thickness of the endomysium and shear deformations within the fiber. One end of the fiber and the outer surface of the endomysium were constrained from moving in the direction (2). To determine the effect of the neighboring endomysium in the rest of the tissue, we created a model of a terminating fiber surrounded by a bundle of fibers (Fig. 2B) based on a histological cross-section obtained as previously described (Sharafi and Blemker, 2010).

We used a hyperelastic, nearly incompressible, transversely isotropic constitutive model to represent the behavior of the fibers and the endomysium in the FE models (Blemker et al., 2005). The tensile and shear properties of both materials were defined via Eq. (2.1.1) ($\alpha = 0$) for endomysium and Eq. (2.1.1.1), and Table 2. The FE simulations were performed in the nonlinear FE solver, NIKE3D (Puso, 2006). Fiber activation, α, was increased from 0.0 to 1.0 incrementally throughout the simulation. Once α reached 1.0, the force was calculated at the constrained end of the fiber for the single fiber model and at the constrained end of all fibers for the bundle model. To compare the FE results with the analytical shear model, we used the analytical model to calculate the force for the same fiber diameter (2μm \sim 80 μm), lengths (varying between 120 μm and 1.6 mm), and fiber volume fraction (75%) as the FE models. The parameters p_1 (for the fiber) and G_{end} were also chosen to be the same as the FE models (Table 2).

3. Results

3.1. Analytical models

The analytical shear model predicted that force transmission increases with increasing fiber resting length, and endomysium shear modulus (Fig. 4A). Similarly, as resting length increases and shear modulus increases, active terminating
fibers remain closer to their optimal length (Fig. 4B). Most importantly, terminating fibers within physiological ranges of resting length, fiber volume fraction, and endomysium shear modulus can transmit virtually all their peak force through shearing of the endomysium. For example, a fiber that has a length to diameter ratio of $L_0/2r_0 = 300$, an endomysium shear modulus of 5 Pa, and a volume fraction of 90% can transmit 99% of its peak isometric force through shearing of the endomysium. Since the values of $L_0/2r_0$ reported in the literature (Table 1) are higher than 300 and the endomysium shear modulus is orders of magnitude larger than 5 Pa (Table 1), our model indicates that all terminating fibers would be capable of transmitting more than 99% of their peak isometric force through shear within the endomysium. The shear model also demonstrated that short terminating fibers in muscles with low fiber volume fractions (perhaps due to atrophy or disease) might have a diminished capacity for lateral force transmission (Fig. 5A). For example a fiber with a fiber volume fraction of 40% must have a much longer optimal fiber length than a fiber with a volume fraction of 90% to transmit all of its peak isometric force through shearing of the endomysium.
fraction of 95% to be able to transmit 99% of its peak force
(Fig. 6A). However, the model predicted that for much of the range of physiological lengths and endomysium tensile moduli (Table 1), terminating fibers cannot transmit as much of their peak isometric force longitudinally through tension within the endomysium as they would through shear. For example, a fiber spanning half the length of a fascicle (L0/Lfascicle = 0.5) with an endomysium tensile modulus of Cend = 30 kPa (the largest estimate based on the literature (Table 1)) can only transmit 55% of its peak force through tension within the endomysium. Since many fibers span less than half the fascicle length (Table 1) and may have an
endomysium tensile modulus smaller than 40 kPa, they likely transmit less than 55% of their peak isometric force through tension within the endomysium.

We compared the ratio of force to peak isometric force as a function of fiber length between the two modes of force transmission, for a fiber with a diameter of 30 μm within a 50 cm long fascicle (e.g. human sartorius (Heron and Richmond, 1993)), an endomysium tensile modulus of 40 kPa and shear modulus of 5 Pa, and a fiber volume fraction of 90% (Fig. 7). In this case, lateral force transmission through shear is substantially more effective than longitudinal force transmission through tension.

3.2. Finite element models

Comparisons of the analytical shear model with the FE models showed that the introduction of nonuniform shear strains through the thickness of the endomysium and fiber shear compliance resulted in only small differences in predicted force for fibers with higher resting lengths (Fig. 8). For a fiber with a resting length of 1.6 mm (L₀/2r₀ = 20), the percentage of peak isometric force predicted by the circular FE model is 99.6% compared to 97.9% for the analytical model. For a fiber with a resting length of 120 μm (L₀/2r₀ = 1.5), the percentage of
peak isometric force is 13.0% for the FE model with circular cross-section, 12.5% for the FE model of the fiber bundle, and 7.8% for the analytical model. The analytical model underestimates the force transmitted from short fibers; however, for a ratio of $L_0/2r_0=20$, the analytical model and the FE model of a single fiber with circular geometry showed good agreement. The FE fiber bundle model and the circular fiber model were in perfect agreement.

4. Discussion

The mathematical models described here demonstrate that terminating fibers with volume fractions within a healthy range have the ability to transmit nearly all of their peak isometric force through shearing of the endomysium. By contrast, there is only limited force transmission ability through tensile within the endomysium that extends from the fiber to the tendon.

Comparison of the shear and tensile models reveals that two key factors cause the shearing of the endomysium to be more effective than tension. First, shear forces transmit force to the endomysium over the entire surface of the fiber. By contrast, tensile forces transmit force on the small cross-sectional area of the endomysium. Second, since the endomysium is thin, a small displacement of the fiber results in large shear strains within the endomysium, and thereby a large shear force resisting the shortening of the terminating fiber (per Eq. (2.1.1.1)). In comparison, the length of the endomysium extending from the fiber to the tendon is much larger (especially for small fiber length to fascicle length ratios), so large displacements still result in relatively small tensile strains, and thereby a smaller tensile force resisting shortening of the fiber.

Analysis of the shear model showed that force transmission through shear becomes more effective as fibers become longer and as their volume fraction increases (Figs. 4 and 5). The fiber length effect arises for two reasons: (i) longer fibers have larger surface areas to transmit shear stress, and (ii) for a given value of fiber stretch, longer fibers undergo a larger absolute length change and therefore result in larger shear strains within the endomysium, hence larger shear resisting forces. The volume fraction effect arises for one key reason: fibers with larger volume fractions have thinner endomysium, and, for a given value of fiber stretch, the fiber with the thinner endomysium will undergo more shear deformation and provide a larger shear resisting force (Fig. 9). Fiber volume fraction can be diminished due to fatty infiltration and fibrosis in various myopathies (Chan and Liu, 2002) as well as injury (Nikolaou et al., 1987). Spastic muscles have been reported to have drastically decreased fiber volume fractions (from a mean of 95% for healthy fibers to 38.5%) (Lieber et al., 2004). The models presented here suggest that these pathological changes in microstructure properties may affect force transmission in muscles that have intrafascicularly terminating fibers.

The analytical shear model employed several simplifying assumptions, including: (i) shear strain is constant across the thickness of the endomysium, (ii) the fiber is rigid in shear, (iii) the fiber and endomysium cross-sections are circular, and (iv) the surrounding muscle tissue can be represented by constraining the outer surface of the endomysium layer in the z direction. The FE models demonstrated that the effects of the simplifying assumptions are small except at very short lengths. The FE models displayed strain nonuniformity through the
thickness of the endomysium (e.g., in the circular FE models, strains in the endomysium varied as much as 1.5 times). However, this nonuniformity was localized near the terminating end of the fiber and its effect on predicted force was negligible. For short fibers, the analytical model slightly underestimates the amount of force transmitted from the fiber, thus providing a conservative estimate. Comparison between the analytical and FE models was carried out for relatively short fiber lengths. For higher resting lengths the ratio of force to peak isometric force approaches one under all conditions. Therefore, if the models are in good agreement for relatively short fibers as demonstrated here, their predictions will be nearly identical at longer lengths.

Our models assumed that the muscle tissue surrounding the terminating fiber was held at a constant length. In Appendix C, we calculated the force transmitted from a terminating fiber within a muscle that undergoes length change. While the forces were slightly different for these cases, the models showed that shearing of endomysium is an effective pathway for force transmission, regardless of whether the surrounding muscle tissue was held at a constant length.

The model assumes that the deformation of the surrounding muscle tissue in response to the contractile force of the terminating fiber is negligible. If this were not the case, the terminating fiber should shorten more and its force would decrease. The stiffness of the surrounding muscle tissue depends on the amount of muscle tissue surrounding the terminating fiber, whether the surrounding fibers are active or passive, and what fraction of them are terminating intrafascicularly. A recently published study (Ramaswamy et al., 2011) showed that forces from a small number of active motor units can be transmitted very effectively through shear to the epimysium of the muscle. In this case, where the rest of the muscle was passive, the fibers from the active motor unit were able to contract without considerable shortening. This finding suggests it is reasonable to assume that the deformation of the tissue surrounding the terminating fiber is negligible.

The models assumed that the cross-sectional area is constant along the entire length of the fiber. The majority of terminating fibers taper over a length of several millimeters (Trotter, 1990). Our analytical shear model suggests that these fibers can transmit nearly all their force through shearing of the endomysium as long as the untapered region of the fiber is at least ~1–2 cm long. Additional force can be expected to be transmitted over the tapered length of the fiber. Furthermore, the tensile model demonstrates that these fibers will not be able to transmit much force longitudinally through tension within the endomysium in series with the tapered end of the fiber.

The models presented here provide new insights into the mechanics of force transmission for muscles that have terminating fibers. The models demonstrate that healthy terminating fibers have the ability to transmit all their force through shearing the endomysium, and substantially less force through tension of the endomysium. While we focused on terminating fibers, lateral force transmission between fibers is also important in spanning fibers, for example, in allowing force transmission in damaged fibers (Purslow, 2002). Furthermore, lateral force transmission has been demonstrated at higher levels of the muscle hierarchy, including within whole muscles (Huijing et al., 1998; Jaspers et al., 1999), and between muscles of the same compartment (Maas et al., 2001). The models presented could be expanded to allow for further insights into lateral force transmission in the context of whole muscle and multiple muscle systems.

Conflicts of interest statement

Neither author has any conflict of interest to report in this research.

Acknowledgements

Funding for this work was provided by the NIH grant R01 AR 056201, the Funds for Excellence in the Science and Technology at the University Virginia, NSF grant #0734262, and the National Skeletal Muscle Research Center at UC San Diego.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jbiomech.2011.04.038.

References

Paul, A.C., 2001. Muscle length affects the architecture and pattern of innervation differently in leg muscles of mice, guinea pig, and rabbit compared to those of human and monkey muscles. The Anatomical Record 262, 301–309.